Как подключить светодиод к плате arduino nano
Перейти к содержимому

Как подключить светодиод к плате arduino nano

  • автор:

Подключение светодиодов (LED) к Ардуино

Светодиоды (LED) — это самый простой и дешевый способ визуализации процесса работы какой-либо программы на ардуине. Поэтому важно уметь подключать светодиоды к плате arduino.

Полупроводниковые светодиоды ( LED ) удобно использовать для индикации процесса работы вашей программы, запущенной на Ардуине. Светодиод очень легко подключить к плате ардуино. Для этого нужен собственно сам светодиод, а также резистор, номинал которого зависит от мощности светодиода.

Вообще говоря, на большинстве ардуино плат уже имеется встроенный светодиод, подключенный к выводу 13 . В большинстве случаев его в принципе и достаточно. Конечно, если мы захотим усложнить нашу программу и использовать несколько светодиодов для лучшей информативности, то нам всё равно придется научиться подключать их к ардуине. Итак, рассматрим как это можно сделать.

Предостережение

Сначала небольшое предупреждение . Ни в коем случае не стоит подключать ваш светодиод напрямую (без резистора) к плате Arduino. Так вы спалите не только светодиод, но и (что гораздо важнее) микроконтроллер на ардуине. Тогда придётся менять контроллер или же (если он в TQFP корпусе) скорее всего выбрасывать плату ардуино целиком.

Подключение одного светодиода LED к Arduino

Подключение светодиода осуществляется следующим образом:

Электрическая схема подключения выглядит так:

Как видите, здесь светодиод подключается через резистор 220 Ом. Это стандартный номинал, который подходит в большинстве случаев: как для слабых, так и для ярких светодиодов (не очень большой мощности). Но сильно мощные светодиоды запитывать от арудины и не стоит.

Можно взять сопротивление больше или чуть меньше — это на результат не повлияет. Вообще максимально допустимый ток на один вывод микроконтроллера ATMEGA328P (который на UNO, Nano и др. ардуинах стоит) составлят 40 мА (или 0.04 А) — как входной ток, так и выходной. Когда используется резистор 220 Ом, то ток составит 5 В / 220 Ом = 0.023 А, как видим еще запас будет. Поэтому без особых опасений (за ардуину) можно ставить резистор от 125 Ом до 1 кОм (и выше). Конечно, чем выше сопротивление, тем менее ярко будет гореть светодиод.

Код программы для Arduino для моргания светодиода

Ну вот, когда светодиод к ардуине подключен, осталось протестить работоспособность всего этого дела. Для этого зашиваем в ардуину следующую программу (на языке C++):

int pin_led = 13; void setup() < // инициализация пина в состояние ВЫХОДА. pinMode(led, OUTPUT); >// цикл: void loop() < digitalWrite(pin_led, HIGH); // включает LED (HIGH level) delay(500); // ждать 0.5 сек digitalWrite(pin_led, LOW); // выключает LED (LOW level) delay(500); // ждать 0.5 сек > 

Здесь, как видно, переменная pin_led указывает номер пина, к которому подключен светодиод. Если требуется поставить светодиод на другой вывод ардуины, то просто меняем это значение переменной.

Как только программа будет зашита (и ардуина перезапущена), светодиод должен начать моргать с периодом в 1 секунду. Если этого не случилось, значит что-то пошло не так — возможно просто программа не загрузилась, или светодиод подключен не той стороной. Учтите, что у светодиода есть полярность. Если подключить его не той сторой, то ничего страшного не случится — просто он не будет светить (p-n переход будет в закрытом состоянии и ток через него не потечет). Полярность светодиода легко определить — смотри рисунок:

Длинная ножка есть АНОД, и её надо подключать к ПИТАНИЮ через резистор (в данном случае к пину, на котором высокий HIGH потенциал). А короткую ножку КАТОД подключаем на землю GND. Резистор можно вставлять как между питанием и светодиодом, так и между землей и светодидом — в данном случае разницы никакой нету.

Подбор резистора в зависимости от цвета светодиода (для подсветки)

Как я уже сказал выше, номинал 220 — 300 Ом — это самое то, чтобы ничего не спалить. Для простой индикации другое и не надо.

Другое дело, если используется какой-либо яркий светодиод, скажем, специально для подсветки чего-то. В этом случае мы хотим использовать возможности светодиода на все 100%. Чтобы включить светодиод на максимальную яркость, нужно взять минимальное значение резистора, при котором ток не превысит максимально допустимый. Но лучше брать с запасом, конечно. Это увеличить срок службы светодиода, поскольку он зависит от тока эксплуатации.

Короче, нужно нам сопротивление резистора вычисляется по следущей формуле:

где U_V — напряжение источника питания в вольтах (для ардуины UNO, Nano, Mega это 5 Вольт).

U_F — прямое падение напряжения на светодиоде в вольтах.

I_max — максимальный прямой ток светодиода в амперах.

0.75 — для запаса (чем меньше значение, тем дольше прослужит светодиод).

Падение напряжения и максимальный ток зависит от светодиода, в частности от материала, из которого он сделан. Как правило, материал светодиода влияет на его цвет излучения (длину волны света).

По одним из данных:

— красный напряжение UF = 3 вольта, Imax = 20 мА

— зеленый напряжение UF = 2.5 вольта, Imax = 20 мА

— синий напряжение UF = 3 вольта, Imax = 50 мА

— белый напряжение UF = 2.7 вольта, Imax = 50 мА

— желтый напряжение UF = 3.5 вольта, Imax = 30 мА

Мои личные эксперименты показывают следующее.

Яркие синие и белые светодиоды имеют падение напряжения U=3.2В.

Если Uпит=5.6 В, то последовательно имеет смысл ставить R=120 Ом для получения тока 20 мА. Для надежности можно поставить 160 Ом — получим 15 мА. Если 220 Ом, то 11 мА (совсем надежно).

У зеленых светодидов диаметром 5mm падение напряжения U=2.8 В.

При тестировании при резисторе 120 Ом и питании 5 В такой светодиод перегорел у меня примерно через год работы (работал непрерывно для подсветки).

Красный светодиод, который средний по размерам. Падание напряжения составляет 1.92 В. Тесты:

— 2 севшие батареи по 1.2 В, резистор 100 Ом. Горит слабо.

— батарея 9 В (севшая немного), резистор 300 Ом. Горит вполно нормально.

— батарея 9 В (севшая немного), резистор 100 Ом. Горит достаточно ярко, но есть риск, что перегорит быстро.

Поскольку на резисторе происходит падение напряжения, а следовательно и потеря энергии батареи, то более оптимальный вариант – это включать последовательно 3-4 светодиода на 9 В без резистора (либо малый резистор, скажем 10 Ом)

Платы ARDUINO по низкой цене

Нажми на изображение, чтобы заказать в интернет-магазине:

Now 20.02.24 13:52:41, Your IP: 178.132.111.198; arduino.zl3p.com/modules/led
ePN

Урок 1 — Мигаем встроенным на плату Arduino светодиодом

.Урок 1 - Мигаем встроенным на плату Arduino светодиодом

На плату Arduino UNO (Nano, Mega, micro и пр.) установлен светодиод который соединен с 13 pin платы. На плате он обозначается буквой L.

Для того чтобы заставить мигать встроенный светодиод на плату Arduino. Достаточно загрузить не большую программу.

Для урока нам понадобиться:

/* Зажигаем светодиод на одну секунду, затем выключаем его на одну секунду в цикле. */ void setup() < // Инициализируем цифровой вход/выход в режиме выхода. // Выход 13 на большинстве плат Arduino подключен к светодиоду на плате. pinMode(13, OUTPUT); >void loop() < digitalWrite(13, HIGH); // зажигаем светодиод delay(1000); // ждем секунду digitalWrite(13, LOW); // выключаем светодиод delay(1000); // ждем секунду >

Функция setup() вызывается, когда стартует скетч. Используется для инициализации переменных, определения режимов работы выводов, запуска используемых библиотек и т.д. Функция setup запускает только один раз, после каждой подачи питания или сброса платы Arduino.

pinMode(13, OUTPUT); Инициализируем цифровой вход/выход в режиме выхода. Этого можно не делать так как цифровые выходы Ардуины по умолчанию настроенные на режим выход.

После вызова функции setup(), которая инициализирует и устанавливает первоначальные значения, функция loop() делает точь-в-точь то, что означает её название, и крутится в цикле, позволяя вашей программе совершать вычисления и реагировать на них. Использовать её нужно для активного управления платой Arduino.

DigitalWrite() — Так как у нас пин настроен как выход (pinMode(13, OUTPUT);), то для значение HIGH напряжение на соответствующем вход/выходе (pin) будет 5В (3.3В для 3.3V плат), и 0В(земля) для LOW.

Т.е. digitalWrite(13, HIGH); — На пин 13 подается 5 вольт.

digitalWrite(13, LOW); — На пин 13 подается 0В.

delay() — Останавливает выполнение программы на заданное в параметре количество миллисекунд (1000 миллисекунд в 1 секунде).

Следующий урок: Мигаем светодиодом подключенным к 2 pin Arduino

Если у вас чего то нет для выполнения данного урока, Вы можете посмотреть в каталоге. Там собранные комплектующими от проверенных продавцов по самым низким ценам.

Понравилась статья? Поделитесь ею с друзьями:

Arduino.ru

В этом примере показано как с помощью контроллера Arduino заставить мигать светодиод.

Необходимые компоненты
  • контроллер Arduino
  • светодиод
  • резистор 220 Ом
Подключение

Мы подключаем резистор сопротивлением 220 Ом к выходу номер 13 (pin 13), к резистору в свою очередь подключаем анод (обычно длинная ножка) светодиода. Катод подсоединяем к земле (Grd). Затем подключаем контроллер через USB кабель к компьютеру и загружаем приведенный ниже код на котроллер Arduino.

Большинство плат Arduino имеют встроенный SMT (Surface-mount techology)светодиод, подключенный к выходу 13. Если вы запустите код на таких платах без подключения внешниего светодиода, то вы должны увидеть мигание встроенного светодиода на плате.

Подключение светодиода к Arduino

Схема

Схема подключения светодиода к Arduino

Код

В коде мы первой строк задаем режим выхода для вход/выхода (pin) 13:

В основном цикле (loop) программы зажигаем светодиод:

На выходе 13 появляется напряжение 5 В. Светодиод зажигается. Затем мы выключаем светодиод:

Изменив напряжение на выходе на 0 вольт, мы выключили светодиод. Для того чтобы человеческий глаз успевал замечать переключение светодиода введем задержку с помощью функции delay() .

/* Зажигаем светодиод на одну секунду, затем выключаем его на одну секунду в цикле. */ void setup() < // Инициализируем цифровой вход/выход в режиме выхода. // Выход 13 на большинстве плат Arduino подключен к светодиоду на плате. pinMode(13, OUTPUT); >void loop() < digitalWrite(13, HIGH); // зажигаем светодиод delay(1000); // ждем секунду digitalWrite(13, LOW); // выключаем светодиод delay(1000); // ждем секунду >

Смотрите также

Подключение светодиода к Arduino

Для начала разберемся что такое светодиод и как он работает. Светодиод — это полупроводниковый элемент, который, при прохождении через него электрического тока излучает свет. Светодиод пропускает ток только в одном направлении от анода к катоду. Подробнее на вики. Это значит что при подключении необходимо соблюдать полярность. Также нужно учитывать, что для каждого светодиода существует допустимая сила тока. Узнать параметры светодиода можно у производителя или продавца.

Узнать полярность светодиода можно по нескольким признакам:

  • Нога анода (+) обычно чуть длиннее
  • Пластиковый бортик светодиода может быть немного усечен со стороны катода (-)
  • Если присмотреться то внутри пластика можно увидеть 2 части светодиода. Анод (+) обычно меньше
  • Можно использовать мультиметр в режиме прозвонки. Светодиод пропускает ток только от анода (+) к катоду (-)
  • Можно подключить к питанию (подходящему по силе тока и напряжению). Если светодиод не светится, значит подключен не той стороной. Просто переверните его.

Теперь поговорим о подключении светодиода к плате Ардуино. Цифровые пины Ардуино способны выдавать ток до 40 мА, но для большинства светодиодов это слишком много. Самые простые и дешевые светодиоды обычно имеют значение предельно допустимого тока в 20 мА. Это значит, что подключив светодиод напрямую к пину Ардуинки, он быстро выйдет из строя. Что бы этого не произошло необходимо использовать токоограничивающий резистор. Можете почитать статью о резисторах, где я рассказывал про токоограничивающие резисторы и расчет необходимого номинала. Так же вам может пригодиться онлайн калькулятор маркировки резисторов для того, что бы найти или купить постоянные резисторы нужного номинала.

Расчет постоянного резистора для светодиода

Выход ардуино имеет напряжение 5 вольт и способен подать ток гораздо выше допустимого для светодиода. Так же необходимо учитывать, что сопротивление светодиода и без того низкое, так еще и падает во время работы.

Используя закон Ома мы можем увидеть, что сила тока будет расти при падении сопротивления и при одинаковом напряжении. Это значит что светодиод требующий 20 мА для работы, будет пропускать через себя более сильный ток и попросту сгорит. Тут то нам и поможет обычный постоянный резистор.

Что бы вычислить необходимый номинал резистора нам необходимо знать характеристики источника питания и характеристики светодиода. А характеристики светодиода можно посмотреть в его техническом описании, или спросить у продавца. Обычно это ток 20 мА и падение напряжения 2 В.

  • Vps — напряжение источника питания (5 Вольт)
  • Vdf — падение напряжения на светодиоде (2 Вольта)
  • If — номинальный ток светодиода (20 миллиампер или 0.02 Ампера)

Теперь подставим наши данные в формулу закона Ома для расчета сопротивления. Если кто забыл то напомню: R = U / I (сопротивление равно напряжению деленному на силу тока). Подставляем наши данные: R = (Vps — Vdf) / If = (5В — 2В) / 0.02А = 150 Ом

Теперь мы просто берем резистор на 150 Ом и ставим его перед или после светодиода (без разницы).

Мы будем подключать светодиод к цифровому пину с поддержкой ШИМ, для того что бы мы могли управлять не только включением и отключением но еще и яркостью светодиода. Советую почитать про характеристики, возможности и распиновку Ардуино нано. Код скетча будет одинаковым для Arduino Nano и Arduino Uno. Его я тоже объясню чуть позже. В качестве токоограничивающего сопротивления я буду использовать постоянный резистор на 150 Ом. Можно использовать резисторы и схожих номиналов, но при меньшем сопротивлении светодиод будет сильнее греться, а при большем будет светить тусклее. Я рекомендую использовать резисторы сопротивлением от 120 Ом и до 250 Ом для самых простых 5 мм светодиодов. Вот наглядная схема подключения светодиода к ардуино нано:

Подключение светодиода к Arduino Uno

Здесь все точно так же как и в прошлом примере, только я решил не использовать макетную плату. Резистор точно такой же на 150 Ом.

Скетч для управления светодиодом с помощью Arduino

Мы подключили светодиод к Arduino как показано на схемах выше. Теперь нам нужно написать программу для управления этим светодиодом. Для написания и загрузки прошивок в микроконтроллер обычно используется Arduino IDE. Мы рассмотрим самый простейший пример. Просто будем мигать светодиодом. Вот сам код скетча:

// Моргаем светодиодом каждую секунду int ledPin = 3; // переменная с пином подключенного светодиода void setup() < pinMode(ledPin, OUTPUT); // назначаем наш пин "выходом" >void loop() < digitalWrite(ledPin, HIGH); // включаем светодиод delay(1000); // ждем 1000 миллисекунд (1 секунда) digitalWrite(ledPin, LOW); // выключаем светодиод delay(1000); // ждем еще 1 секунду >

Думаю тут все понятно. Если же нет то можете ознакомиться с разделами сайта «Аrduino для начинающих» и «Программирование«.

Железо

Стартовый набор с Arduino Mega и RFID

Стартовый набор с Arduino Mega и RFID Это расширенный стартовый набор. В комплект входит Arduino Mega R3, макетные платы, множество датчиков, управляемые механизмы и необходимые радиоэлектронные компоненты. Полный список.

Плата Arduino Uno R3

Плата Arduino Uno R3 Arduino Uno — плата на базе микроконтроллера ATmega328P с частотой 16 МГц. На плате есть все необходимое для удобной и быстрой работы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *